EFICÁCIA E SELETIVIDADE DE HERBICIDAS APLICADOS PARA O MANEJO DE PLANTAS DANINHAS EM MILHO

AGAZZI, L.R. (UFFS – Erechim/RS – luci_agazzi@hotmail.com); DAVID, F.A. (UFFS, Erechim/RS – felipededavid@hotmail.com); KUJAWINSKI, R. (UFFS, Erechim/RS – renato_polaco@hotmail.com); DONIN. E.J. (UFFS, Erechim/RS – evandrodonin@gmail.com); PERIN, G.F. (UFFS, Erechim/RS – gismael@uffs.edu.br); GALON, L. (UFFS, Erechim/RS – leandro.galon@uffs.edu.br)

RESUMO: A interferência de plantas daninhas na cultura do milho provoca danos à produtividade e a qualidade dos grãos, sendo fundamental o uso de estratégias de controle das mesmas. Assim, objetivou-se com o trabalho avaliar a eficácia e a seletividade de herbicidas aplicados em isolado e/ou em misturas em tanque para o controle de plantas daninhas infestantes do milho. O delineamento experimental utilizado foi de blocos casualizados, com quatro repetições. Os tratamentos aplicados em pré-emergência foram atrazine + simazine; e em pós-emergência: atrazine + simazine; nicosulfuron; tembotrione; mesotrione; atrazine + simazine + nicosulfuron; atrazine + simazine + tembotrione; atrazine + simazine + mesotrione; nicosulfuron + tembotrione; nicosulfuron + mesotrione; tembotrione + mesotrione; testemunhas capinada e infestada. As variáveis avaliadas foram a fitotoxicidade dos herbicidas à cultura do milho aos 07 e 14 dias após a aplicação dos tratamentos (DAT), controle das plantas daninhas Ipomoea indivisa e Brachiaria plantaginea aos 07, 14 e 21 DAT e na pré-colheita do milho. Avaliou-se ainda a produtividade de grãos (t ha⁻¹) do milho. A aplicação da mistura em tanque dos herbicidas atrazine + simazine + nicosulfuron, atrazine + simazine + tembotrione, atrazine + simazine + mesotrione e o herbicida mesotrione foram eficientes para o controle de I. indivisa e B. plantaginea durante todo o ciclo do milho, com controle superior a 80%. Todos os herbicidas testados foram seletivos ao hibrido de milho Formula TL®, visto que as injúrias sofridas pela cultura foram baixas. A maior produtividade de grãos de milho foi alcançada pelo uso da mistura em tanque de nicosulfuron + tembotrione a qual não diferiu do tembotrione aplicado em isolado.

Palavras-chave: Zea mays, Brachiaria plantaginea, Ipomoea indivisa

INTRODUÇÃO

A interferência das plantas daninhas pode causar redução na produtividade de grãos de milho devido a competição por água, luz e nutrientes (GALON et al., 2010). As plantas daninhas podem ainda, hospedarem insetos e patógenos, bem como dificultar a colheita,

comprometendo a qualidade dos grãos colhidos (PORTUGAL, 2013). No Rio Grande do Sul, o papuã (*B. plantaginea*) e a corda-de-viola (*Ipomoea* spp.) destacam-se como as espécies que mais prejuízos causam ao milho, sendo necessária a adoção de métodos de manejo que minimizem ou evitem as perdas na cultura.

O método químico destaca-se como o mais utilizado, em função da eficácia, praticidade e menor custo quando comparado aos demais (TIMOSSI e FREITAS, 2011). Entretanto, o método químico pode provocar fitotoxicidade e perdas na produtividade de grãos quando aplicados em isolado ou em misturas em tanque (CAVALIERI et al., 2012). Desse modo trabalhos que abordem a eficácia e a seletividade de herbicidas aplicados para o controle de plantas daninhas infestantes do milho apresentam significativa importância, pois trata-se de uma técnica que vem sendo adotada por inúmeros agricultores do Norte do Rio Grande do Sul.

Desse modo, objetivou-se com o trabalho avaliar a eficácia e a seletividade de herbicidas aplicados em isolado e/ou em misturas em tanque para o controle de plantas daninhas infestantes do milho.

MATERIAL E MÉTODOS

O experimento foi instalado a campo, em sistema de plantio direto na palha em delineamento experimental de blocos casualizados, com quatro repetições. Os tratamentos testados foram: atrazine + simazine (5 L ha⁻¹) aplicado em pré-emergência, e em pós-emergência do milho e das plantas daninhas; atrazine + simazine (5,0 L ha⁻¹); nicosulfuron (1,5 L ha⁻¹); tembotrione (0,24 L ha⁻¹); mesotrione (0,4 L ha⁻¹); atrazine + simazine (2,5 L ha⁻¹) + nicosulfuron (0,75 L ha⁻¹); atrazine + simazine (2,5 L ha⁻¹) + tembotrione (0,12 L ha⁻¹) ; atrazine + simazine (2,5 L ha⁻¹) + mesotrione (0,2 L ha⁻¹); nicosulfuron (0,75 L ha⁻¹) + tembotrione (0,12 L ha⁻¹); nicosulfuron (0,75 L ha⁻¹) + mesotrione (0,2 L ha⁻¹); tembotrione (0,12 L ha⁻¹) + mesotrione (0,2 L ha⁻¹) + mesotrione (0,2 L ha⁻¹); tembotrione

O herbicida pré-emergente foi aplicado antes da emergência das plantas daninhas e da cultura, e os de pós-emergência quando o milho atingiu o estádio vegetativo V3 (três folhas desenvolvidas), a corda-de-viola com duas a quatro folhas e papuã com três folhas a dois perfilhos. Realizou-se o levantamento populacional na área experimental, o qual apresentou população média de 15 e 186 plantas m⁻² de corda-de-viola e de papuã, respectivamente, sendo estas plantas provenientes do banco de sementes do solo.

A semeadura do híbrido de milho Formula TL[®] foi efetuada com semeadora/adubadora, em espaçamento entre linhas de 0,65 m, em 23/09/2012, na densidade de 4,0 sementes m⁻¹, obtendo-se uma população aproximada de 55.000 plantas ha⁻¹. Cada unidade experimental foi composta por 4 linhas de 2,6 m de largura e 5,0 m de comprimento (13,0 m²). As variáveis avaliadas foram: fitotoxicidade dos herbicidas ao milho

aos 07 e 14 dias após a aplicação dos tratamentos (DAT), controle das plantas daninhas aos 07, 14 e 21 DAT e na pré-colheita do milho. Para determinar a fitotoxicidade e o controle dos herbicidas foram atribuídas notas percentuais de 0 (zero) a 100% por dois avaliadores, em que a nota zero (0%) corresponde a nenhuma injúria e a nota cem (100%) a morte completa das plantas.

A produtividade do milho (t ha⁻¹) foi determinada na área útil de 3,9 m². A colheita foi realizada quando os grãos de milho atingiram 18% de umidade e corrigida para 13% para determinar a produtividade. Os dados foram submetidos a análise de variância pelo teste F, e em sendo significativos aplicou-se o teste de Tukey com p≤0,05.

RESULTADOS E DISCUSSÃO

O controle da corda-de-viola e do papuã, foram iguais ou superiores a 80%, em todas as épocas avaliadas, quando utilizadas as misturas em tanque de atrazine + simazine + nicosulfuron; tembotrione + mesotrione; atrazine + simazine + tembotrione e atrazine + simazine + mesotrione (Tabela 1), com destaque para as duas últimas misturas que apresentaram controle médio próximo a 96%, não diferindo da testemunha capinada.

Tabela 1. Controle (%) de corda-de-viola (*I. indivisa*) e papuã (*B. plantaginea*) em função da aplicação de herbicidas. UFFS, *Campus* Erechim – RS, 2012/13.

	Controle de corda-de-viola (%)				Controle de papuã (%)			
Tratamentos	07 DAT ¹	14 DAT	21 DAT	Pré- colheita	07 DAT	14 DAT	21 DAT	Pré- colheita
Atrazine + simazine ²	89,7 abc ³	93,0 ab	81,5 e	91,0 abc	63,7 fg	67,5 c	41,2 c	22,5 d
Atrazine + simazine	91,0 abc	92,7 ab	91,2 bcd	90,7 abc	68,7 ef	87,2 b	85,2 b	73,0 b
Nicosulfuron	55,0 d	84,7 b	89,5 cd	91,5 abc	75,0 de	98,5 a	100,0 a	91,0 a
Tembotrione	78,2 c	93,5 a	89,5 cd	65,0 d	82,5 cd	98,5 a	100,0 a	94,0 a
Mesotrione	79,2 c	94,0 a	100,0 a	96,2 ab	84,5 bcd	87,7 b	80,5 b	37,5 c
Atrazine + simazine + nicosulfuron	89,0 abc	98,0 a	95,7 abc	81,5 c	80,0 d	96,7 a	94,5 a	92,2 a
Atrazine + simazine + tembotrione	95,5 ab	97,0 a	97,7 ab	86,2 bc	92,7 abc	99,7 a	99,5 a	90,7 a
Atrazine + simazine + mesotrione	98,2 a	99,2 a	99,0 a	96,0 ab	94,7 ab	98,2 a	95,5 a	94,0 a
Nicosulfuron + tembotrione	61,2 d	93,0 ab	87,7 de	87,2 bc	60,7 fg	98,7 a	100,0 a	96,7 a
Nicosulfuron + mesotrione	55,0 d	96,5 a	97,7 ab	88,7 abc	56,2 g	95,2 a	95,0 a	90,7 a
Tembotrione + mesotrione	83,0 bc	97,7 a	97,5 ab	94,0 ab	81,0 d	98,7 a	99,7 a	93,7 a
Test. infestada	0,0 e	0,0 c	0,0 f	0,0 e	0,0 h	0,0 d	0,0 d	0,0 e
Test. capinada	100,0 a	100,0 a	100,0 a	100,0 a	100,0 a	100,0 a	100,0 a	100,0 a
CV (%)	6,82	3,98	3,29	5,59	6,15	2,66	3,06	5,43

¹ Dias após a aplicação dos tratamentos. ² Aplicado em pré-emergência. ³ Médias seguidas pela mesma letra minúscula na coluna, não diferem entre si pelo teste de Tukey a p≤0,05.

Todos os herbicidas e misturas aplicados aos 14 e 21 DAT demonstram ser eficientes para o controle da corda-de-viola e do papuã com controle superior a 80%, a exceção da

mistura de atrazine + simazine em pré-emergência para o papuã (Tabela 1). Segundo OLIVEIRA et al., (2009) o controle mínimo que determinado herbicida deve apresentar para ser recomendado é de 80%, desta forma, os tratamentos descritos anteriormente podem ser consideradas eficientes no controle das plantas daninhas.

Na pré-colheita do milho os herbicidas, tembotrione, atrazine + simazine + nicosulfuron, atrazine + simazine + tembotrione, nicosulfuron + tembotrione, para corda-deviola, e atrazine + simazine (pré e pós-emergência) e o mesotrione, para o papuã, foram os que diferiram da testemunha capinada, apresentando os menores controles (Tabela 1). Diferente do observado no presente trabalho, ZAGONEL et al., (2010) encontraram resultados satisfatórios, para o controle do papuã infestante da cultura do milho, com o uso de mesotrione associado a atrazina.

Em relação a fitotoxicidade, avaliada aos 07 e 14 DAT, observou-se de maneira geral que todos os herbicidas ocasionaram baixos sintomas de injúrias, com valores inferiores a 3,7% (Tabela 2). O atrazine + simazine, aplicado em pré-emergência, não causou efeito fitotóxico sobre o milho, igualando-se as testemunhas capinada e infestada (Tabela 2).

Tabela 2. Fitotoxicidade (%) e produtividade de milho híbrido Fórmula TL[®] em função da aplicação de herbicidas. UFFS, *Campus* Erechim – RS, 2012/13.

Tratamentas	Fitotoxicio	Duo destinido do do suño o		
Tratamentos -	07 DAT ¹	14 DAT	Produtividade de grãos	
Atrazine + simazine ²	0,0 c ³	0,0 c	9,0 h	
Atrazine + simazine	2,2 b	2,7 ab	10,2 cde	
Nicosulfuron	2,7 ab	2,7 ab	10,3 cd	
Tembotrione	2,7 ab	3,2 ab	10,7 ab	
Mesotrione	2,5 ab	2,5 ab	9,9 ef	
Atrazine + simazine + nicosulfuron	3,5 ab	3,5 ab	10,4 cd	
Atrazine + simazine + tembotrione	3,5 ab	2,2 b	9,56 g	
Atrazine + simazine + mesotrione	3,7 a	2,7 ab	10,4 cd	
Nicosulfuron + tembotrione	3,0 ab	3,2 ab	10,9 a	
Nicosulfuron + mesotrione	2,5 ab	3,7 a	9,5 g	
Tembotrione + mesotrione	3,0 ab	3,2 ab	9,7 fg	
Testemunha infestada	0,0 c	0,0 c	7,8 i	
Testemunha capinada	0,0 c	0,0 c	10,1 de	
CV (%)	25,17	24,53	1,12	

¹ Dias após a aplicação dos tratamentos. ² Aplicado em pré-emergência. ³ Médias seguidas pela mesma letra minúscula na coluna, não diferer entre si pelo teste de Tukey a p≤0,05.

A maior produtividade de milho foi obtida com a mistura em tanque composta por nicosulfuron + tembotrione, a qual não diferiu do tembotrione, sendo estas, em média, 38,5% superior a testemunha infestada (Tabela 2). Para RODRIGUES e ALMEIDA (2011) o nicossulfuron e o tembotrione são opções de herbicida para aplicação em pós-emergência e seletivos para o milho, quando se deseja controlar monocotiledôneas e dicotiledôneas. Desse modo constatou-se que o controle das plantas daninhas se faz necessário para evitar

perdas de produtividade da cultura, pois todos os tratamentos foram superiores a testemunha infestada (Tabela 2). Entretanto, cabe destacar que o controle mecânico pode danificar as raízes do milho, podendo haver menor produtividade de grãos, como o observado neste estudo. Além disso, o uso do método mecânico de controle (capina) em lavouras de milho é oneroso, pouco eficiente e demanda muita mão de obra, o que gera elevados custos, se comparado ao método químico de controle.

CONCLUSÕES

A aplicação das misturas em tanque de atrazine + simazine + nicosulfuron, atrazine + simazine + tembotrione e atrazine + simazine + mesotrione foram eficientes para o controle de corda-de-viola e do papuã durante todo o ciclo do milho.

Todos os herbicidas testados foram seletivos ao híbrido de milho Formula TL[®], visto que as injúrias sofridas pela cultura foram baixas.

A maior produtividade de grãos de milho foi alcançada pelo uso da mistura em tanque de nicosulfuron + tembotrione a qual não diferiu tembotrione.

AGRADECIMENTO

Ao CNPq e à FAPERGS pelo auxílio financeiro à pesquisa (Processos n. 482144/2012-2/CNPq e 12/22653/FAPERGS) e pelas concessões de bolsas.

REFERÊNCIAS BIBLIOGRÁFICAS

CAVALIERI, S D. et al. Seletividade do nicosulfuron em três estádios fenológicos de milhopipoca. **Planta Daninha**, v.30, n.2, p.377-386, 2012.

GALON, L. et al. Avaliação do método químico de controle de papuã (*Brachiaria plantaginea*) sobre a produtividade de milho. **Pesquisa Agropecuária Tropical**, v.40, n.4, p.414-421, 2010.

OLIVEIRA, A.R. et al. Controle de *Commelina benghalensis*, *C. erecta*, *Tripogandra diuretica* na cultura do café. **Planta Daninha**, v.27, n.4, p.823-830, 2009.

PORTUGAL, L.V. **Fitotoxicidade de herbicidas pós-emergentes em híbridos de Milho**. 2013. 51f. Dissertação (Mestrado em Sistemas de Produção na Agropecuária) – Universidade José do Rosário Vellano, Alfenas, 2013.

RODRIGUES, B.N.; ALMEIDA, F.S. **Guia de herbicidas**. 6 ed. Edição dos Autores: Londrina, 2011. 672p.

TIMOSSI, P.C.; FREITAS, T.T. Eficácia de nicosulfuron isolado e associado com atrazine no manejo de plantas daninhas em milho. **Revista Brasileira de Herbicidas**, v.10, n.3, p. 210-218, 2011.

ZAGONEL, J. et al. Mesotrione + atrazina em mistura formulada. In: CONGRESSO BRASILEIRO DA CIÊNCIA DAS PLANTAS DANINHAS, 27, 2010. **Anais...** Ribeirão Preto/SP: SBCPD, 2010. CD-ROM.