ESTUDO DO INCREMENTO DO METABOLISMO DE HERBICIDAS EM CAPIM-ARROZ (*Echinochloa crus-galli*) RESISTENTE A IMIDAZOLINONAS

MATZENBACHER, F.O. (UFRGS – IRGA, Porto Alegre/RS – felipematzenbacher@gmail.com), MEROTTO JR, A. (UFRGS, Porto Alegre/RS – merotto@ufrgs.br), KUPAS, V. (UFRGS, Porto Alegre/RS – valmir.agro@yahoo.com.br), WAGNER, J.F. (UFRGS, Porto Alegre/RS – juliano.wagner@yahoo.com.br), KALSING, A. (IRGA, Cachoeirinha/RS – augustokalsing@gmail.com), MENEZES, V.G. (IRGA, Cachoeirinha/RS – vmgaedke@yahoo.com.br).

RESUMO: A frequência de biótipos de capim-arroz resistente aos herbicidas imidazolinonas e a quinclorac nas lavouras de arroz irrigado é crescente nos últimos anos. O objetivo deste trabalho foi avaliar o efeito de inibidores de metabolização no controle de capim-arroz por imazethapyr, quinclorac e clomazone em estudos em casa de vegetação e a campo. A aplicação prévia desses inibidores aumentou o controle dos biótipos CAMAQ01 e PALMS01 no experimento em casa de vegetação e do biótipo resistente PALMS01 presente na área experimental no ensaio a campo. A aplicação de inibidores de metabolização não influenciou a eficácia de quinclorac em nenhum dos experimentos e reduziu a eficácia de clomazone no experimento a campo. Os resultados demonstram o envolvimento de enzimas de metabolização no mecanismo de resistência a imazethapyr em, pelo menos, dois biótipos de capim-arroz.

Palavras-chave: imazethapyr, quinclorac, clomazone, resistência múltipla.

INTRODUÇÃO

Capim-arroz (*Echinochloa crus-galli*) é uma planta daninha altamente competitiva com a cultura do arroz irrigado. Nos últimos anos é crescente a evolução de biótipos resistentes a inibidores de ALS e a quinclorac em praticamente todas as regiões produtoras de arroz dos estados do Rio Grande do Sul e de Santa Catarina (Andres *et al.*, 2007; Merotto Jr. *et al.*, 2009). Contudo, o mecanismo fisiológico que torna esses biótipos resistentes não foi identificado, o que dificulta a tomada de decisão para a prevenção e controle deste problema.

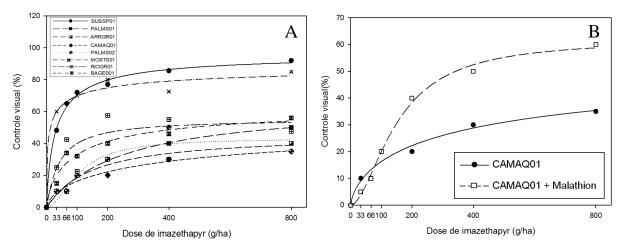
Resistência de plantas daninhas por metabolização de herbicidas é um mecanismo problemático, pois um biótipo pode evoluir resistência a herbicidas de diferentes mecanismos de ação e mesmo a produtos nunca aspergidos anteriormente sobre o mesmo (Powles & Yu, 2010). Estudos de metabolização de herbicidas podem ser realizados através

de inibidores específicos das enzimas citocromo P450 monooxigenase (cyt P450s), como o inseticida organofosforado malathion (Fischer *et al.*, 2000). Assim, o objetivo do presente estudo é avaliar a eficácia de inibidores de cyt 450s para identificar a ocorrência de metabolização como mecanismo de resistência de capim-arroz aos herbicidas imidazolinonas e avaliar a influência destes produtos na eficácia de controle de quinclorac e clomazone.

MATERIAL E MÉTODOS

Foram desenvolvidos dois experimentos no ano agrícola de 2010/2011. O primeiro experimento em casa de vegetação foi arranjado em blocos completamente casualizados e em esquema fatorial, com 5 repetições. O fator A foi composto por oito biótipos de capimarroz: dois biótipos suscetíveis, cinco resistentes a herbicidas inibidores da ALS e um com resistência múltipla a ALS e a quinclorac. A resistência e a suscetibilidade dos biótipos analisados foram comprovadas em estudos anteriores (Merotto Jr. *et al.*, 2009). O fator B representa os herbicidas imazethapyr nas doses: 0, 33, 66, 100, 200, 400 e 800 g ha⁻¹, com adição de 0,5 % v/v Dash; clomazone nas doses de 0, 100, 200, 300, 400, 500, 750 e 1000 g ha⁻¹; e quinclorac nas doses: 0, 75, 150, 225, 300, 375, 562,5 e 750 g ha⁻¹, com adição de 1 L ha⁻¹ Assist. O fator C consistiu na presença ou ausência do inibidor de cyt P450s malathion na dose de 1000 g ha⁻¹.

As unidades experimentais foram de vasos plásticos com capacidade para 250 mL, contendo uma planta de capim-arroz crescendo em solo Gleissolo Háplico Ta distrófico adubado com 500 kg ha⁻¹ de N-P-K (5-20-20). A aspersão dos herbicidas e malathion ocorreu isoladamente quando as plantas estavam no estádio de 4 folhas, com utilização de pulverizador costal pressurizado com CO₂ munido de bicos DG 110.02, com pressão de 50 psi e calibrado para vazão de 200 L ha⁻¹. O malathion foi aspergido duas horas antes dos herbicidas. As avaliações foram realizadas através de controle visual aos 2, 7, 14, 21 e 28 dias após o tratamento (DAT), e massa seca da parte aérea aos 28 DAT.


O segundo experimento foi conduzido em lavoura de arroz irrigado no município de Palmares do Sul-RS, com histórico de resistência de capim-arroz a herbicidas inibidores de ALS (Merotto Jr. *et al.*, 2009). A semeadura ocorreu no dia 5 de novembro de 2010 utilizando a cultivar PUITÁ INTA CL, na densidade de 100 kg ha⁻¹ de sementes. A área experimental continha uma infestação de aproximadamente 480 plantas m⁻² do biótipo resistente a inibidores de ALS PALMS01 que também foi avaliado no experimento em casa de vegetação. O delineamento experimental foi o de blocos ao acaso, com 4 repetições. O fator A foi os herbicidas imazethapry, quinclorac e clomazone nas doses de 100, 375 e 500 g ha⁻¹, respectivamente. O fator B consistiu na presença ou ausência de inibidores de cyt

P450s malathion e piperolina butóxido (PBO) nas doses de 1000 e 1200 g ha⁻¹, respectivamente. A aplicação dos inibidores, dos herbicidas e os demais tratos culturais foram os mesmos citados anteriormente. As avaliações realizadas foram: controle visual aos 11, 28, 45, 64 e 100 DAT, e massa seca de capim-arroz aos 38 DAT.

Nos dois experimentos, os dados foram submetidos à análise de variância (ANOVA) pelo F-teste (p≤ 0,05). Quando a ANOVA foi significava (*p*<0,05), a análise complementar do experimento em casa de vegetação foi realizada com ajustes por equações logísticas de três parâmetros. No experimento a campo, os efeitos simples das médias foram comparados pelo teste de Duncan a nível de 5 % de probabilidade.

RESULTADOS E DISCUSSÃO

A análise do C₅₀ indicou a resistência de cinco dos seis biótipos a imazethapyr com fatores de resistência entre 3,10 e 12,84 (Figura 1a; Tabela 1). A resistência do biótipo ARRGR01 a quinclorac também foi confirmada, porém a dose necessária para controlar 50 % não foi alcançada, o que inviabilizou a determinação do fator de resistência (dados não mostrados). Nenhum dos biótipos avaliados apresentou resistência a clomazone (dados não mostrados).

Figura 1. Controle visual (%) aos 14 DAT de oito biótipos de capim-arroz (A) e do biótipo resistente CAMAQ01 associado à aplicação prévia de malathion (B) em função de diferentes doses de imazethapyr.

O efeito da aplicação de inibidores de metabolização na eficácia de imazethapyr, quinclorac e clomazone foi avaliado no experimento em casa de vegetação e a campo. Os resultados obtidos indicaram um incremento de controle por imazethapyr nos biótipos CAMAQ01 (Figura 1b, Tabela 1) e PALMS01 (dados não mostrados) no experimento em casa de vegetação e do biótipo PALMS01 no experimento a campo (Tabela 2) quando os inibidores de metabolização foram aplicados previamente aos herbicidas. A eficácia de quinclorac não foi influenciada pela aplicação prévia de malathion ou PBO em nenhum biótipo no experimento em casa de vegetação (dados não mostrados) e no experimento a

campo (Tabela 2). A aplicação prévia de inibidores do cyt P450s não interferiu na eficácia de clomazone no controle de capim-arroz em casa de vegetação. No entanto, no experimento a campo, o controle de capim-arroz por clomazone foi reduzido pela aplicação de malathion ou PBO, assim como a fitointoxicação da cultura (Tabela 2).

Tabela 1. Parâmetros da equação logística e fator de resistência (FR) para a variável controle visual aos 14 dias após os tratamentos (DAT) com diferentes concentrações de imazethapyr no experimento em aspersão folhar.

Biótipo /	b 1/	d ²	C	FR ^{6/}					
Tratamento			Concentração 4/	IC ^{5/} 95%	rk-				
Comparativo entre biótipos									
SUSSP01	-0,84**	96,50**	31,04**	(24,57; 37,51)					
PALMS01	-1,00**	65,23**	246,55**	(179,57; 313,55)	7,94				
ARRGR01	-1,03**	45,56**	144,50**	(93,11; 195,89)	4,66				
CAMAQ01	-0,67**	57,55**	398,63*	(239,63; 557,63)	12,84				
PALMS02	-1,85**	43,20**	107,00**	(84,76; 129,24)	3,45				
MOSTS01	-0,47**	92,63 ^{NS}	9,16*	(3,57; 14,74)	0,30				
RIOGR01	-1,07*	55,39**	41,23*	(7,53; 74,95)	1,33				
BAGE001	-0,76*	64,90*	96,26*	(66,14; 126,38)	3,10				
Efeito de malathion									
CAMAQ01 (R)	-0,67**	57,55**	398,63*	(239,63; 557,63)	2,62				
R + Malathion	-1,77**	61,84**	152,07**	(144,68; 159,46)					

 $b^{\frac{1}{2}}$ Declividade da curva; $d^{\frac{2l}{2}}$ Limite superior; $C_{50}^{\frac{3l}{2}}$ Dose do herbicida imazethapyr que causa 50 % de controle; $d^{\frac{4l}{2}}$ Dose em g ha⁻¹; IC $d^{\frac{5l}{2}}$ 95% Intervalo de confiança a 95% de probabilidade; FR fator de resistência = C_{50} do biótipo analisado/ C_{50} do biótipo SUSSP01 ou C_{50} do tratamento controle/ C_{50} com inibidor. ** P < 0,01; * P < 0,05; Não significativo.

O processo de metabolização esteve relacionado com a resistência a imazethapyr nos biótipos CAMAQ01 e PALMS01. Resultados similares de redução de fator de resistência mediante o uso de inibidores de metabolização relacionam o incremento do metabolismo como mecanismo de resistência a diferentes herbicidas em diferentes espécies daninhas (Yuan et al., 2007). Em Digitaria sanguinalis L., por exemplo, a resistência a imazethapyr foi relacionada ao incremento do metabolismo após a redução do fator de resistência quando o herbicida foi aplicado em associação com malathion (Hidayat & Preston, 2001). Em trabalhos com Echinochloa phyllopogon foi constatado que a adição de malathion seguida da aplicação de bispyribac-sodium aumentou o controle em até 31% em biótipos resistentes em relação à aplicação do herbicida isoladamente (Fischer et al., 2000).

A eficácia de clomazone foi reduzida quando aplicado em associação com inibidores de metabolização. Resultados similares foram observados na cultura do algodão, onde a aplicação de disulfoton e phorate no sulco de semeadura reduziu a fitointoxicação por clomazone em relação ao tratamento somente com o herbicida (Culpepper *et al.*, 2001). A menor eficácia de clomazone após a aplicação prévia de inibidores de cyt P450s ocorre pela

menor degradação do clomazone em 5-keto clomazone. Esse metabólito foi identificado como o composto que possui ação herbicida (Ferhatoglu & Barrett, 2006).

Tabela 2. Efeito de herbicidas e inibidores de metabolização na fitointoxicação do arroz, controle visual e massa seca de capim-arroz. Palmares do Sul, RS, 2010/11.

Tratamentos	Fitointoxicação (%)		Controle visual (%)			Massa seca
	11 DAT*	28 DAT	11 DAT*	28 DAT	45 DAT	(g m⁻²)
Testemunha	0 B¹	0 D	0 D	0 F	0 C	94,6 A
PBO	9 B	0 D	5 D	4 F	0 C	74,0 AB
Malathion	0 B	0 D	0 D	0 F	0 C	69,9 AB
Imazethapyr	0 B¹	0 D	21 C	18 E	13 BC	46,0 ABC
lmazethapyr + malathion	9 B	0 D	44 B	40 D	21 B	33,5 BC
Imazethapyr + PBO	0 B	0 D	50 B	43 D	25 B	40,7 BC
Quinclorac	0 B¹	0 D	83 A	91 AB	91 AB	0,9 C
Quinclorac + malathion	9 B	0 D	90 A	95 A	97 A	3,5 C
Quinclorac + PBO	0 B	0 D	89 A	94 A	97 A	4,9 C
Clomazone	56 A	21 A	83 A	90 AB	90 A	2,8 C
Clomazone + malathion	51 A	13 B	83 A	79 CB	84 A	34,7 BC
Clomazone + PBO	55 A	5 C	83 A	72 C	83 A	31,35 BC

¹ Médias seguidas pela mesma letra na coluna não diferem entre si pelo teste de Duncan (*p*<0,05).

CONCLUSÕES

A eficácia de imazethapyr aumentou em resposta a adição de inibidores de metabolização em dois biótipos de capim-arroz em condições controladas e no experimento a campo. Portanto, a resistência por processo de metabolização de herbicidas pode ser o mecanismo que confere resistência ao herbicida imazethapyr em pelo menos dois biótipos de capim-arroz analisados.

REFERÊNCIAS BIBLIOGRÁFICAS

- ANDRES, A. et al. Detecção da resistência de capim-arroz (*Echinochloa* sp.) ao herbicida quinclorac em regiões orizícolas do sul do Brasil. **Planta Daninha**, v. 25, n.1, p. 221-226, 2007.
- CULPEPPER, A.S., et al. Effect of insecticides on clomazone absorption, translocation, and metabolism in cotton. **Weed Science**, v.49, n.5, p.613-616, 2001.
- FERHATOGLU, Y.; BARRETT, M. Studies of clomazone mode of action. **Pesticide Biochemistry and Physiology**, v.85, n.1, p.7-14, 2006.
- FISCHER, A. J., et al. Mechanisms of resistance to bispyribac-sodium in an *Echinochloa phyllopogon* accession. **Pesticide Biochemistry and Physiology**, v.68, n.3, p.156-165, 2000.
- HIDAYAT, I. e PRESTON, C. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of *Digitaria sanguinalis*. **Pesticide Biochemistry and Physiology**, v.71, n.3, p.190-195, 2001.
- MEROTTO JR., A., et al. Resistência de Capim-arroz (*Echinochloa crusgalli*) aos herbicidas inibidores da enzima ALS. **VI CONGRESSO BRASILEIRO DE ARROZ IRRIGADO**. Porto Alegre, RS, 2009. CD-ROM.

^{*} DAT – dias após o tratamento.

- POWLES, S.B.; YU, Q. Evolution in action: plants resistant to herbicides. **Annual Review of Plant Biology**, v.61, p.317-47, 2010.
- YUAN, J. S.; TRANEL, P. J.; STEWART, C. N. Non-target-site herbicide resistance: a family business. **Trends in Plant Science**, v.12, n.1, p.6-13, 2007.