

INTERFERÊNCIA DE PLANTAS DANINHAS EM FEIJOEIRO SOB DEFICIÊNCIA HÍDRICA

PARREIRA, M. C. (mariana.casari@posgrad.fcav.unesp.br), AMARAL, C. L. (caritaliberato@hotmail.com), CESARIN, A. E. (annecesarin@gmail.com), ALVES, P. L. C. A. (plalves@fcav.unesp.br) UNESP, FCAV, Depto. Biologia Aplicada à Agropecuária, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900 Jaboticabal–SP.

RESUMO: Este trabalho avaliou o desempenho de plantas de feijão (*Phaseolus vulgaris*) na ausência e presença de plantas daninhas submetidas a diferentes regimes de irrigação. A pesquisa foi implantada em câmara de crescimento em delineamento inteiramente casualizado, no esquema fatorial 5 x 4, sendo quatro espécies de planta daninha: *Bidens pilosa, Amaranthus viridis, Cenchrus echinatus, Digitaria horizontalis* e uma testemunha sem planta daninha; submetidas a quatro regimes de irrigação: a cada dois, três, quatro e cinco dias, em cinco repetições. Os dados obtidos foram submetidos à análise de variância e as médias foram comparadas pelo teste de Tukey a 5% de probabilidade. As plantas daninhas em convivência com o feijoeiro afetaram negativamente a área foliar, sendo *C. echinatus* e *D. horizontalis* as mais agressivas, mas sem refletir em decréscimos nas características produtivas. A redução na disponibilidade de água no substrato afetou negativamente o desenvolvimento do feijoeiro. .

Palavras-chave: Phaseolus vulgaris, plantas daninhas, deficiência hídrica.

INTRODUÇÃO

O feijão é uma das culturas mais importantes do Brasil, a terceira em área plantada, atingindo 9% da área cultivada. O País é o maior produtor mundial de feijão, superando 3,2 milhões de toneladas (CONAB, 2010). Por possuir crescimento vegetativo curto e ser uma planta C₃ torna-se muito sensível a competição das plantas daninhas por fatores essenciais como luz, espaço e principalmente água, juntamente com nutrientes, em estádio inicial de seu desenvolvimento (COBUCCI, 1996).

Para Silveira et al. (2001), a produtividade do feijoeiro é bastante afetada pela condição hídrica do solo e, deficiência ou excesso de água nas diferentes fases do ciclo da cultura causam redução na produtividade.

Como resposta à deficiência hídrica, as plantas passam por mudanças fundamentais na relação da célula com a água e nos seus processos fisiológicos, morfológicos e nutricionais, influenciando na sua capacidade de resistir às condições adversas do meio. Por conseguinte, há restrição no acúmulo de massa, prejudicando tanto o crescimento inicial das plantas como os estádios mais tardios, limitando a dimensão das folhas individuais, o número de folhas, o número e taxas de crescimento dos ramos e o crescimento do caule (TAIZ e ZEIGER, 2004).

Diante do que foi exposto, este trabalho teve por objetivo verificar o desempenho de plantas de feijão (*Phaseolus vulgaris* L.) na presença de plantas daninhas submetidas a diferentes regimes de irrigação.

MATERIAL E METODOS

O experimento foi desenvolvido em câmara de crescimento no Laboratório de Biologia e Manejo de Plantas Daninhas, pertencente ao Departamento de Biologia Aplicada à Agropecuária da Faculdade de Ciências Agrárias e Veterinárias, UNESP, Câmpus Jaboticabal.

As sementes de feijão utilizadas foram do grupo carioca, cultivar Bola Cheia e os propágulos das plantas daninhas foram coletados na região do município de Jaboticabal-SP. As sementes e os propágulos foram semeados em vasos de três litros preenchidos com a mistura de terra peneirada mais o substrato comercial Plantmax HT (1:1 v/v).

Após a emergência das plântulas, foi realizado o desbaste nos vasos, deixando uma planta de feijão somente e/ou uma planta de uma espécie de planta daninha (*Bidens pilosa, Amaranthus viridis, Cenchrus echinatus, Digitaria horizontalis*), que ficaram por quarenta dias um período de cinco dias de adaptação e estabilização, visando garantir a sobrevivência das plantas. Após este período, as plantas foram submetidas a quatro regimes de irrigação: RI2 - irrigação a cada dois dias; RI3 - irrigação a cada três dias; RI4 - irrigação a cada quatro dias e RI5 - irrigação a cada cinco dias. O delineamento experimental foi o inteiramente casualizado, com os tratamentos dispostos em esquema fatorial 5 x 4, em cinco repetições.

As irrigações foram efetuadas de acordo com os tratamentos e em função da necessidade de cada vaso. As lâminas foram determinadas a partir de medição direta da evapotranspiração, obtida por pesagem, que recebiam reposição 60% de água da capacidade de campo, visando repor em função da necessidade de cada vaso para atingir os 21% de

umidade do substrato. A temperatura média na câmara de crescimento foi de 26° C e a umidade relativa média foi de 60%.

No fim do experimento, após 70 dias do início da aplicação dos regimes de irrigação, foram feitas avaliações área foliar (LICOR, modelo LI 3000A), massa fresca e seca de vagens por planta, número de grãos por vagem, massa seca de folhas e caules (determinadas após secagem dos materiais em estufa com circulação forçada de ar a 70 °C), das plantas de feijão.

Os dados obtidos foram submetidos à análise de variância e as médias foram comparadas pelo teste de Tukey a 5% de probabilidade utilizando-se o programa Sisvar.

RESULTADOS E DISCUSSAO

A interação entre os efeitos da convivência com as plantas daninhas e os regimes de irrigação não foi significativa (Tabela 1). Contudo, as plantas daninhas em convivência com o feijão exerceram influência negativa sobre a área foliar, no qual ficou evidenciado que *C. echinatus* e *D. horizontalis* foram as espécies mais competitivas, proporcionando redução de 22,8% e 32,4%, respectivamente. Por se tratar de espécies que possuem via de fixação de carbono do tipo C₄, *C. echinatus* e *D. horizontalis* possuem hábito de crescimento agressivo, resultando em alta competitividade por água, luz e nutrientes (KISSMANN e GROTH, 1999). Este mecanismo fotossintético confere diversas vantagens em relação às plantas C₃, como o feijoeiro, principalmente em ambientes quentes e úmidos (PAUL e ELMORE, 1984).

Tabela 1: Análise de variância das características: área foliar (cm²), vagens frescas e secas por plantas (g), número de grãos por vagem, massa seca de caule e folha (g), e altura de inserção da primeira vagem (cm) nas plantas de feijão.

Espécies	Area Foliar (cm²)	Vagens frescas (g)	Vagens secas (g)	Nºgraos/ vagem	MS Caule (g)	MS Folha (g)	Inser. vagem (cm)
P. vulgaris (isolado)	976,57 A	9,20 A	2,29 A	4,50 A	1,38 A	2,13 A	8,80 A
Amaranthus viridis	965,25 A	10,30 A	2,57 A	4,65 A	1,54 A	2,12 A	9,60 A
Bidens pilosa	893,75 B	8,30 A	2,15 A	5,02 A	1,32 A	1,91 A	8,40 A
Cenchrus echinatus	753,29 C	10,60 A	2,27 A	4,65 A	1,42 A	2,12 A	8,82 A
Digitaria horizontalis	660,32 C	8,70 A	2,18 A	4,92 A	1,39 A	1,78 A	9,60 A
Regime irrigação							
RI2	1197,24 A	12,56 A	2,85 A	5,06 A	1,84 A	3,01 A	9,24 A
RI3	896,41 B	9,92 B	2,49 AB	5,02 A	1,54 AB	2,08 B	8,27 A
RI4	677,30 C	7,76 B	1,90 BC	4,58 A	1,24 BC	1,78 BC	9,04 A
RI5	500,39 C	7,44 B	1,80 C	4,66 A	0,94 C	1,28 C	9,12 A
F PL	5,71*	1,71 ns	0,77 ns	2,09 ns	0,83 ns	1,50 ns	2,82 ns

F RI	34,69**	12,03*	7,59 **	2,66 ns	18,01 **	28,27 **	0,37 ns	
F PL x RI	1,45 ns	0,96 ns	0,62 ns	1,45 ns	0,83 ns	1,32 ns	0,70 ns	
CV (%)	31.17	36.19	36.7	15.5	33.09	33.48	18.3	_

Médias seguidas por letras diferentes na coluna diferem significativamente pelo teste Tukey a 5% de probabilidade.

A espécie *B. pilosa* foi menos competitiva que as monocotiledôneas, pois verificou-se que as plantas de feijão se desenvolveram mais rapidamente e suprimiram seu crescimento. Mesmo assim, a interferência inicial da planta daninha reduziu 8,3% da área foliar do feijoeiro (Tabela 1). Resultados semelhantes foram obtido por Barroso et al. (2011) em que picão-preto foi menos agressivo que capim-colchão e capim-pé-de-galinha em competição com o feijoeiro na safra de seca.

A espécie *A. viridis* proporcionou menor influencia para o feijoeiro nestas condições, reduzindo apenas 1,2% da área foliar (Tabela 1). Contudo, esta espécie pode ser muito agressiva, pois de acordo com Bensch et al. (2003) a produtividade do feijoeiro foi reduzida em 26% somente com o convívio com plantas de caruru. As características vagens frescas e secas por plantas, número de grãos por vagem, massa seca de caule e folha e altura de inserção da primeira vagem nas plantas de feijão não foram afetadas pelo convívio com plantas daninhas (Tabela 1).

Os regimes de irrigação influenciaram na área foliar, massa seca e fresca de vagens e massa seca de caule e folhas. Em todos estas características o regime RI2, no qual houve reposição de 60% da capacidade de campo a cada dois dias, proporcionou melhores resultados (Tabela 1).

A área foliar foi afetada mais drasticamente nos tratamentos RI4 e RI5 (repondo água a cada 4 e 5 dias), nos quais a redução foi superior a 43% e 58%, respectivamente. Resultados similares foram obtidos por Aguiar et al. (2008), em que índice de área foliar foi sensivelmente afetado para feijoeiros do grupo carioca e preto quando submetidos ao estresse hídrico.

As massas secas e frescas de vagens foram reduzidas em 43% e 36%, respectivamente, quando submetida ao RI5. Contudo, mesmo irrigando a cada três dias (RI3), as reduções foram significativas, sendo de 21% e 13% respectivamente (Tabela 1). A cultura do feijoeiro (cultivar Talismã) também apresentou severa redução em sua produtividade, quando submetida a deficiência hídrica (SANTANA et al., 2009). A maior produtividade do feijoeiro foi alcançada em função da maior reposição de água e sendo esta mais frequente (Santana et al., 2008).

^{**, *} Significativo ao nível de 1 e 5% de probabilidade pelo teste F, respectivamente. ns: Não significativo

A massa seca de caule e folhas obtiveram comportamentos semelhantes (Tabela 1), reduzindo drasticamente, no tratamento RI5 (fornecimento de água a cada 5 dias), sendo de 49% e 50% respectivamente. O número de grãos por vagem e altura de inserção da primeira vagem nas plantas de feijão não foram influenciados pelos regimes de irrigação.

CONCLUSÃO

As plantas daninhas em convivência com o feijoeiro afetaram negativamente a área foliar, sendo *C. echinatus* e *D. horizontalis* as mais agressivas, mas sem refletir em decréscimos nas características produtivas. A redução na disponibilidade de água no substrato afetou negativamente o desenvolvimento do feijoeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

AGUIAR, R. S. de et al. Avaliação de linhagens promissoras de feijoeiro (*Phaseolus vulgaris* L.) tolerantes ao déficit hídrico Semina: Ciências Agrárias, v.29, n.1, p.1-14,2008.

BENSCH, C.N., et al. Interference of redroot pigweed (*Amaranthus retroflexus*), Palmer amaranth (*A. palmeri*), and common waterhemp (*A. rudis*) in soybean. WeedSci. v.51, p 37-43, 2003.

COBUCCI, T.; et al. Manejo de plantas daninhas na cultura do feijoeiro em plantio direto. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 1999. 56 p. (Circular Técnica, 35).

COBUCCI, T.; et al. Controle de plantas daninhas. In: ARAUJO, R.S.; RAVA, C.A.; STONE, L.F.; ZIMMERMANN, M.J. de O. (coords.). Cultura do feijoeiro comum no Brasil. Piracicaba: POTAFOS, 1996. p.433-464.

COMPANHIA NACIONAL DO ABASTECIMENTO - CONAB. Safra de feijão total (1.ª, 2.ª e 3.ª safras) – 3.º levantamento. Brasília. Disponível em: http://www.conab.br. Acesso em: 24 abr. 2010.

KISSMANN, K. G.; GROTH, D. Plantas infestantes e nocivas. 2.ed. São Paulo: BASF, 1999.978p.

PAUL, R.; ELMORE, C.D. Weeds and the C4 syndrome. WeedsToday, v.15, p.3-4, 1984.

SANTANA, M. J. et al. Coeficiente de cultura e análise de rendimento do feijoeiro sob regime de irrigação. Irriga, v.13, n.01, p.92-102, 2008.

SANTANA, M. J. et al. Viabilidade técnica e econômica da aplicação de água na cultura do feijoeiro comum (*Phaseolus vulgaris* L.). Ciência e Agrotecnologia, v.33, n.02, p. 532-538, 2009.

SILVEIRA, P.M., et al. Efeitos do preparo do solo, plantio direto e de rotações de culturas sobre o rendimento e a economicidade do feijoeiro irrigado. Pesquisa Agropecuária Brasileira, v.36, n.2, p.257-263, 2001.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 3. ed. Porto Alegre: Artmed, 2004. 719 p.